
Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Quantum machine learning

Bc. Jan Svoboda

Supervisor: Mgr. Jakub Mareček Ph.D.
Supervisor–specialist: Ing. Aleš Wodecki Ph.D.
Field of study: Cybernetics and robotics
May 2024



ctuthesis t1606152353 ii



Acknowledgements

I would like to thank everyone who stood
by my side throughout this amazing part
of my life, the last chapter of which is this
thesis.

Declaration

I declare that the presented work is solely
mine and that I cited all the literature
used.

In Prague, 24. May 2024

iii ctuthesis t1606152353



Abstract

Although quantum computing is still not
yet used in the real world, it is impor-
tant to study it in order to understand
the concepts of quantum computing and
to expand our knowledge of the possibil-
ities of quantum computing. This pa-
per compares quantum machine learning
methods with kernel methods, as the two
have much in common. It is our intention
to devise a methodology for the genera-
tion of quantum kernels in such a way
that they may be challenging to simulate
using classical computer systems. The
aforementioned methodologies are subse-
quently tested on real data sets, with
somewhat disappointing results.
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Chapter 1

Introduction

In recent years, quantum computing has gained more and more scientific focus,
lending itself to being the revolutionizer across various artificial intelligence
fields, including machine learning. While machine learning is obviously one of
the growing fields of artificial intelligence, it is not disregarded by quantum
computing with much-desired properties, with exponential speedup being one
of them. Exponential speedup using quantum computation is the result of
quantum phenomena called entanglement and superposition. These enable
us to perform computations exponentially faster than classical computers.
This may accelerate not only the training but also classification. However
quantum computation does not only carry benefits, several disadvantages
need to be pointed out, such as nowadays hardware limitation. Even though
rapid advancements are made, up to data quantum computers still faces
problems of low computational power which rises from coherence time, gate
fidelity and qubit connectivity - these enforce restriction on what problems
can and cannot be solved by quantum computers today, making quantum
computers noisy and tending to errors. Correcting errors and filtering out
noise can be done, but it utilizes another qubit, making the computation
inefficient. Another problem with quantum computing is the phenomena
that quantum mechanics is based on: measurement is part of an experiment.
With qubits living in their own Hilbert space, mapping results of quantum
computation back to the classical data so that scientists can utilize it affects
the state significantly, and the development of trustworthy methods for state
readout is still a simmering problem. Despite these obstacles, inspecting
the potential power of quantum computing is a necessary task to harness
the quantum computational power once large-scale quantum computers are
designed. With the rise of quantum computing, several questions occurred.
One of the most questioned ones is the existence of quantum advantage.
Meaning whether there are tasks that can be done on quantum computers
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1. Introduction .....................................
that can’t be done on classical computers. Several qualitative measures are
assumed, such as time of computation, resources needed for the task, etc.
In this work, we introduce quantum kernels that are #P hard to evaluate
classically. These findings are then justified by experiments that aim to show
that these kernels are indeed useful and not only examples of a rather useless
tool that has the property of being hard to simulate.

ctuthesis t1606152353 2



Chapter 2

Quantum kernels

Machine learning is one of the most growing and focused areas of artificial
intelligence studies. This field involves a vast number of methods. It focuses
on finding statistical models given data and developing strategies for compu-
tational tasks such as data classification, regression and other tasks. In this
paper focus is on general soft-margin support vector machine, described as
follows:
Definition 2.1 (Soft-margin SVM). Given data D(X ,Y), with X being samples
and Y its labels obtain weight vector w∗, bias b∗ and slack variable ς, so that
we minimize:

min
w,b,ς
||w||22 + C

n=|X|∑
i=1

ςi (2.1)

subject to yi(wxi − b) ≥ 1− ςi, ςi ≥ 0,∀i ∈ {1, ..., n},

Where C is hyperparameter.

This is often called a primal problem. Soft-margin SVM leads to classifying
data X with labels Ŷ (hat over letter corresponds to prediction):

ŷi = sign(w∗xi + b∗). (2.2)

We further introduce hinge loss:

L(yi, ŷi) = max(0, 1− yiŷi) = max(0, 1− yi(wxi + b)), (2.3)

outputting 0, then ŷi is the same as label yi, and a positive number describing
the distance from correct labelling otherwise. The optimal solution to soft-
margin SVM satisfies

ςi = L(yi, ŷi). (2.4)

3 ctuthesis t1606152353



2. Quantum kernels ...................................
Rewriting original equation ?? then yields:

min
w,b

λ||w||22 +
n=|X|∑

i=1
L(yi, ŷi) (2.5)

Such an approach can work correctly with the assumption of linearly separable
data, which in real-life applications is more than naive. The key is to map data
X to higher-dimensional space, making our data separable with a hyperplane.
Data mapping is done using a feature map. This is where the quantum
circuit comes in handy. A feature map can generally be seen as a map from
Euclidean space to higher dimensional Hilbert space. When speaking about
almost anything in the context of quantum computing, it is always thought
of as a concept of living in Hilbert space and embedding data to a quantum
circuit with a feature map is exactly what needs to be done once we want to
map data X to higher dimensional Hilbert space H.
Definition 2.2 (Quantum feature map). Let x be data from data space X
that we want to encode into the quantum circuit. F is the space of complex
density matrices C2n×2n . Then, the data encoding feature map is defined as:

ϕ : X → F (2.6)

ϕ(x) = E(x) |0n⟩ (2.7)

where E(x) is unitary gate defined based on data x.

This feature map gives rise to a kernel-distance metric based on the dot
product.
Definition 2.3 (Quantum kernel). Let ϕ be defined as above. Then quantum
kernel is the inner product between two data encoding feature vectors phi(x),
ϕ(x′) {x, x′} ∈ X :

κ(x, x′) = ⟨ϕ(x)|ϕ(x′)⟩, (2.8)

we can also define kernel matrix K with rows and columns corresponding to
the inner product between individual samples:

K(X )ij = κ(xi, xj). (2.9)

.

This kernel matrix K(X ) commonly referred to as Gram matrix is positive
definite To some extent, all of quantum computing can be considered an
instance of a kernel method since classical kernel methods map to higher
dimensions but access higher dimensions only using a kernel. Quantum
computers do something similar with accessing quantum Hilbert space using
measurements. Thus, all quantum computation using the encoding of classical

ctuthesis t1606152353 4



........................... 2.1. Reproducing kernel Hilbert spaces

data appears equivalent to kernel methods. With mapping to higher dimen-
sional Hilbert space, a dual problem can be introduced. Once the features
are mapped, the equivalent dual problem to soft-margin SVM is:

max
αi

∑
i

αi −
1
2

|X |∑
i,j

αiαjyiyj ⟨ϕ(xi)|ϕ(xj)⟩ (2.10)

s.t.
∑

i

yiαi = 0

0 ≤ αi ≤ λ,∀i.

The famous kernel trick states that there exists function f(xi, xj) in the
Euclidean space, which is equivalent to the dot product ⟨ϕ(xi)|ϕ(xj)⟩. Popular
functions satisfying this property are Gaussian kernel function f(xi, xj) =

e−γ||xi−xj ||22 , radial basis function f(xi, xj) = e−
||xi,xj ||2

2σ2 , et cetera. From the
above, while thinking about generating quantum kernels, one thing is clear
- the generated kernel is very closely linked to the feature map. Examples
of feature maps will be presented later. Quantum computers have several
properties that suggest quantum advantage, with the leading one being
exploring exponentially large spaces using entanglement and interference.

2.1 Reproducing kernel Hilbert spaces

Data X together with embedding ψ(x) generate reproducing kernel Hilbert
space.
Definition 2.4 (Reproducing kernel Hilbert space). Let X ≠ ∅. The RKHS
of a kernel κ over X is the Hilbert space F created by completing the
span of functions f : X → R, f(·) = κ(x, ·), x ∈ X . For two functions
f(·) =

∑
i αi∥(xi, ·), g(·) =

∑
j βj∥(xj , ·) ∈ F , the inner product is defined as:

⟨f |g⟩F =
∑
ij

αiβj∥(xi, xj), (2.11)

with αi, βj ∈ R.

2.2 Spectral decomposition

To use the notion of later kernel target alignment, spectral decomposition
needs to be introduced. Let us have a kernel k(x, y), marginal distribution
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2. Quantum kernels ...................................
µ(x), and integral operator K defined as:

Kf(x) =
∫
k(x, x′)f(x′)µ(dx′), (2.12)

where f(x) is target function. Due to Mercer’s theorem, we can say that if k is
a symmetric positive-definite kernel, then there exists a set of eigenfunctions
ψ and eigenvalues γ such as

k(x, x′) =
∑

i

γiψi(x)ψi(x′), (2.13)

and this set may be infinite. This allows us to define spectral decomposition:

f(x) =
∑

i

αiψi(x), (2.14)

again, there is no upper bound on i, and this decomposition may be infinite.

2.2.1 Kernel classifier

In order to evaluate our methods, we will use a kernel classifier. Unlabelled
data points x ∈ X will be labelled with ŷ via equation:

ŷ = f(X) =
N∑

i=1
αik(x̂, xi), (2.15)

where xi are samples from training data D(X, y). αi is sort of a weight which
given by yi(K(X,U)ii − λI) with λ being an hyperparameter.

ctuthesis t1606152353 6



Chapter 3

Quantum kernel methods properties

The main idea behind using quantum kernel methods is the fact that quantum
computers can do computations that are hard to simulate classically. The very
important thing to mention is the data. Loosely put, once a quantum process
generates the data, quantum computers are thought to overcome classical
ones. On the other hand, once the data are generated classically, the hope for
an advantage is much smaller. For example, once we have a quantum circuit
which can easily compute function f , which requires exponential resources to
be approximated classically, once we generate data as

Y = f(x) + ϵ,

quantum kernel κ(x, x′) = f(x)f(x′) then has an exponential advantage for
learning f over classical kernel[KBS21]. To bring something to the table, we
shall dig much deeper than this trivial example does. We wish to investigate
the properties of kernels and separate "good" kernels from "bad" ones. To
efficiently separate them, we use two metrics of kernel quality:

.Kernel target alignment.Asymmetric geometric difference

The first is used in work [KBS21], the latter from [HBM+21]. Kernel target
alignment (KTA) may be regarded as the final measure that offers qualitative
insight into the calculated kernel and will be utilized to show that the kernel is
competitive and even advantageous to its classical opponent. The asymmetric
geometric difference have a close relationship with each other and truly
describe whether the quantum kernels have an edge over the classical ones.
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3. Quantum kernel methods properties...........................
3.1 Kernel target alignment

Kernel target alignment is introduced in [CSTEK01]. It is probably the most
used measure when describing the quality of kernels.
Definition 3.1 (Kernel target alignment). Kernel target alignment A(k, f) is
then defined as follows:

A(k, f) = ⟨k, f ⊗ f⟩
⟨k, k⟩1/2⟨f ⊗ f, f ⊗ f⟩1/2 =

∑
i γiα

2
i

(
∑

i γi)1/2∑
i α

2
i

, (3.1)

where k is the quantum kernel and f is the target function.

However, a rather more understandable definition would be the following:
let’s have a binary classification task. We can then define an ideal kernel
matrix, which is generated from the training dataset labels y ∈ {±1} ∈ Y:

K∗
ij = yiyj . (3.2)

Kernel target alignment is then defined as:

A(K,K∗) = ⟨K|K∗⟩F√
⟨K∗|K∗⟩F ⟨K|K⟩F

, (3.3)

which is the notion that will be used throughout this work. ⟨K1,K2⟩F =∑N
i,j=1K1(xi, xj)K2(xi, xj) is Frobenius inner product of two matrices. Kernel

target alignment can be interpreted as a measure of similarity based on the
cosine of the angle. From such knowledge, we already know the range of
output for general matrices - resulting in KTA(A,B) ∈ [−1, 1].

3.2 Asymmetric geometric difference

Asymmetric geometric difference is defined as follows:

gab = g(Ka||Kb) =
√
||
√
KbK

−1
a

√
Kb||∞, (3.4)

where || · ||∞ is the spectral norm of a matrix. Ka and Kb are corresponding
kernels. It is important to mention the assumption that Tr(Ka) = Tr(Kb) =
N , which can be enforced using regularization. The first sign of a step towards
quantum advantage is when gcq (asymmetric geometric difference between
classical and quantum kernel) is proportional to qcq ∝

√
N . Once this is met,

the second condition is sc ∝ N while sq ≪ N .

ctuthesis t1606152353 8



............................ 3.3. Speed-up using quantum kernels

3.3 Speed-up using quantum kernels

The essential idea of utilizing quantum kernels is that it can produce evaluation
speed-up. Evaluating kernel on the classical computer has complexity n2.
On the other hand, the situation is different with quantum computers. The
time complexity of mapping to feature space is n. The inner product is then
calculated using a swap test with 1. Thus, there is a quadratic speed-up in
evaluating kernels compared to classical computers. [KMS19]

9 ctuthesis t1606152353
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Chapter 4

Hardness of random circuits

To accomplish the quantum advantage, the quantum algorithm needs to have
one property - it must be hardly simulated classically. This event would mean
overturning the Extended Church Turing thesis, an event commonly named
Quantum supremacy. Hand in hand with quantum supremacy comes the fact
that not even classical supercomputers can outperform quantum computers.
While there are several strategies for such a job, random circuit sampling is
most promising since it implements universal quantum computation, relies on
a minimal number of assumptions and can be tested in larger experiments.
Two other ways of representing quantum advantage are Bosson sampling
and instantaneous models of quantum computation. In this section, I intro-
duce findings from [Mov20]. Let us introduce several concepts that are the
foundation of the theorems that are introduced later.

4.1 Circuit architecture

Circuit architecture is mentioned throughout this section and is important to
define. First, we assume that each circuit has n qubits. On these qubits can
be applied 1-qubit and 2-qubit gates. Regarding the fact that any quantum
computation can be translated to a circuit using solely universal gates [Wil11],
we can see this model as universal. By circuit architecture A, we mean such
ensemble that we apply m gates on these qubits. At this point, we define gates
only as blackbox, and when we mention architecture A, we don’t consider the
gates’ definition. So when talking about architecture A, we mean something
like in figure ??, some sort of a blueprint. We can say that architecture A

11 ctuthesis t1606152353



4. Hardness of random circuits ..............................
with a description of each gate defines a quantum circuit. The architecture

Figure 4.1: Circut architecture A blueprint

becomes a circuit once the gates are defined using unitaries. The circuit itself
can be described by a single unitary given the equation:

C = CmCm−1 . . . C1, (4.1)

Where Ci is a single gate. If the gate is applied only to 1 qubit, the unitary is
Ci = Cî⊗ I, where Cî is simply the 1-qubit gate, yielding that it does nothing
to the second qubit.

4.2 Worst case and average case circuits

In the literature, it is proven [TD04], that for architecture with depth,
n = 4 exists worst case circuit for which to classically approximate quantity
p = |⟨0n|C|0n⟩|2 is #P-hard up to the constant relative error. However,
talking about worst-case circuits is insufficient to achieve quantum supremacy.
Quantum supremacy claims that drawing strings from a distribution that
mimics the probability distribution induced by the random circuit is compu-
tationally hard for any classical algorithm that takes as input the classical
description of the gates. [Mov20] We need to extend this finding to most
circuits. Thus, we introduce the idea of an average case circuit. This circuit
is generated completely at random by the QR decomposition of a random
Gaussian matrix.

4.3 Haar random circuit distribution

Haar random circuit distribution is defined on architecture over circuits A.
We have the Haar random circuit distribution HA over circuits A whose local
gates are independently drawn from the Haar measure. An algorithm for
sampling the Haar measure is given in the chapter devoted to experiments.

ctuthesis t1606152353 12



............................ 4.3. Haar random circuit distribution

4.3.1 Cayley transformation and Cayley path

Cayley transformation is a map

f(x) : R→ C : 1 + ix

1− ix (4.2)

which maps a line of points to a unit circle. We also want to further de-
fine f(−∞) = −1. This function is used when transforming between two
unitary matrices trough path θ ∈ [0, 1]. Following the definition of Cayley
transformation, we further introduce:

H = τ(h) =
N∑

α=1
f(λα) ⟨ψα|ψα⟩ , (4.3)

where H is unitary matrix generated from hermitian matrix h, λα and ψα

are eigenvalues and eigenvectors of h. The generated unitary matrix H is of
Haar measure and is a representation of the previously mentioned average
case circuit. Lastly, we want to define the Cayley path, which is parametrised
by parameter θ ∈ [0, 1]:

C(θ) = Wτ(θh), (4.4)
where W is the fixed worst case circuit and h is randomly generated hermitian
matrix generating H = τ(θh) which is of average case circuit instance. From
this equation, we can point out the fact that this Cayley path truly oscillates
between worst-case circuit W and average-case circuit with Wτ(0) = W I = W
and Wτ(1) = WH, the later is due to the left-translation invariance again
random Haar unitary, thus an instance of an average case circuit. This is

Figure 4.2: Cayley path

really an important concept worth stressing. What Cayley transformation
does is that it makes the worst case circuit and random case circuit defined
on the architecture A equivalent. The equation for circuit unitary becomes:

C(θ) = Wmτm(θ)Wm−1τm(θ) . . .W1τ1(θ). (4.5)

We then assume that τi(1) is a unitary matrix according to the Haar measure.
Then the distribution over Wmτi(θ) for |1− θ| ≤ ∆≪ 1 is O(∆)-close to the
Haar in total variation distance.

13 ctuthesis t1606152353



4. Hardness of random circuits ..............................
4.3.2 Theorems

I will introduce the main results presented in [Mov20].
Theorem 4.1 (Hardness of random quantum circuits (informal)[Mov20]). Sup-
pose there exists an architecture A for which it is #P hard to compute
arbitrary output probabilities to within small multiplicative error. Then it is
#P hard to calculate the probability amplitude for most circuits with the
same architecture to within ϵ = 2−Ω(m) where m is the number of gates.

This states that, indeed, most circuits have the property of being hard
to calculate the amplitudes. The reasoning behind this theorem is that if
there would exist a classical algorithm which efficiently computes p0(θ) =
|⟨0n|C|0n⟩|2 for θ ≈ 1 - an instance of average case circuit, then we could
call this algorithm poly(n) times on θi, and with Berlekamp-Welch algorithm
use these samples to obtain p0(θ),∀θ. But this would cause a collapse of the
polynomial hierarchy, so it means that there cannot exist such a classical
algorithm [Mov20]. This theorem is built upon the foundation of the two
following ones. It sort of merges both of them while making them more
tractable.
Theorem 4.2 (#P hardness of Haar random circuits [Mov20]). Let A be
an architecture such that computing p0 = |⟨0n|C|0n⟩|2 is #P-hard in the
worst case. Then it is #P-hard to output |⟨0n|C|0n⟩|2 with the probability
α = 3

4 + 1
poly(n) over the choice of circuits H ∈ HA.

Proof of this theorem follows that given the Berlekamp-Welch algorithm,
outputting rational function p0(θ) is possible given a sufficient number of
measurements |θi|i = poly(n). However, this fact implies BPP = #P. This
is highly unlikely. To mention the second theorem once again, we need to
define a new concept, which is classical algorithm O such that this algorithm
has the property:

Pr[|O(C(zi))− p0(zi) ≤ ϵ] = 1− 1
poly(n) ; |zi| ≤ ∆, (4.6)

w here zi = 1 + θi, a parameter defining Cayley path and ∆ is defined as the
upper bound on the interval on which we take θi: |1− θi| ∈ [0,∆].
Theorem 4.3 (Robustness of #P hardness [Mov20]). Assuming access to an
oracle O as described above, it is #P-hard to compute p0(C(θ)) over HA to
within ϵ = 2−Ω(m2) additive error.

This is an important result since it builds the concept of robustness to the
random circuit sampling.

ctuthesis t1606152353 14



Chapter 5

Main concept

From the previous section we can show main concept of this work. Main idea
is to construct the kernel κR(xi, xj) such that the kernel is utilizing random
unitary. The kernel is constructed as:

κR(xi, xj) = ⟨ψ(xi)|U |ψ(xj)⟩ , (5.1)

with U being randomly generated unitary. If we sample from unitary distribu-
tion for unitaries U for a long enough time, we will find a unitary that strictly
improves measures of kernel quality, such as kernel target alignment, etc. For
proof, we use previously mentioned theorems 4.2 and 4.3. Since these proofs
take into account estimating probabilities of | ⟨0n|C|0n⟩ |2, we need to extend
it to our case, where we wish to estimate probabilities | ⟨ψ(x)|C|ψ(y)⟩ |2. The
proof is fairly simple. If we assume the fact that estimating |⟨0n|C|0n⟩|2 is
#P-hard we can rewrite the

| ⟨ψ(x)|C|ψ(y)⟩ |2 = |⟨0n|E†(x)CE(y)|0n⟩|2 (5.2)
= | ⟨0n|C|0n⟩ |2 (5.3)

. This means that only by applying unitary operations (which are known
from the data, and their conjugate transpose can be easily calculated) we can
translate our problem to the one of estimating | ⟨0n|C|0n⟩ |2. If estimating
| ⟨ψ(x)|C|ψ(y)⟩ |2 wouldn’t be #P-hard, estimating | ⟨0n|C|0n⟩ |2 would not
be as well.

15 ctuthesis t1606152353
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Chapter 6

Embeddings

Since embedding data to the quantum circuit together with random unitary
gives rise to a kernel, we may introduce several ways to map classical data
D(X ,Y) to the circuit. There exist several approaches to map such data, and
there is still an open question about which mapping works well on the given
data. In our experiment, these mappings will be tested against each other.

6.1 Basis embedding

One of the simplest embeddings is basis embedding [Sch21]. In this example,
the data are binarized, and these binary strings are then mapped to the
circuit. In our setup, this means that if the data is mapped to the binary
string of length N , at least 2N qubits need to be present in the circuit. Basis
embedding is by default meant such that every 0-bit gets mapped to the |0⟩
and 1 to |1⟩, but the states may be arbitrary, for example |+⟩ and |−⟩, |l⟩
and |r⟩, but as long as the mapped states are orthogonal, we can talk about
basis embedding. The mapping is described by the following equation:

ψ(x) =
N⊗

i=1
m(xi) (6.1)

where xi is the i-th bit of the string, and x is the mapping function as described
above. Basis embedding generates kernel corresponding to Kronecker delta:

κ(x, x′) = δx,x′ (6.2)

17 ctuthesis t1606152353



6. Embeddings .....................................
6.2 Amplitude embedding

Another possible and a bit more sophisticated embedding is amplitude embed-
ding [Sch21]. It maps N -dimensional data D(x) ∈ C such that each dimension
of input gets mapped to a quantum state. Mapping can be defined via the
equation:

|ψ(x)⟩ = 1
|x|

N∑
i=1

xi |i⟩ , (6.3)

where i is from the orthogonal basis of the quantum space. For example,
data x = (0, 3, 0, 4) then gets mapped to the state ψ(x) = 1√

5(3 |01⟩+ 4 |11⟩).
Amplitude embedding generates a kernel corresponding to the absolute square
of the linear kernel:

κ(x, x′) = |x†x∥2 (6.4)

Since this embedding is not defined by the set of gates but rather unitary,
obtaining unitary which maps state R |0n⟩ → |ψ(x)⟩ is important. Generating
such unitary is done via Householder transformation [Mez07]. Equation of
projector R is:

R = I− 2|v⟩⟨v| (6.5)

where |v⟩ = |0n⟩ − |ψ(x)⟩ is the difference of input and desired state.

6.3 Rotation embedding

Rotation encoding can encode data X ∈ Rn[Sch21]. The data should be
precomputed in a way that each xi ∈ X is in the interval ⟨0, 2π). For this
data, each i-th component xi gets mapped to the superposition of |0⟩ and |1⟩
regarding its value. The embedding can be described by the equation:

|ψ(x)⟩ =
N⊗

i=1
cos(xi) |0⟩+ sin(xi) |1⟩ . (6.6)

Again, as in the example of basis embedding, this mapping can be slightly
changed, and the resulting state can be a superposition of different bases
({|+⟩ , |−⟩}, etc.) The corresponding kernel of rotation embedding is the
cosine kernel:

κ(x, x′) =
n=|X|∏

i=1
| cos(xi − x′

i)|2 (6.7)
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.................................. 6.4. Pauli feature map

6.4 Pauli feature map

A much more sophisticated encoding feature map is a family of Pauli feature
maps. These transform data x ∈ Rn, where n is the feature dimension, as:

UΦ(x) = exp(i
∑
S∈I

ψS(x)
∏
i∈S

Pi), (6.8)

where S is a set of qubit indices that describes the connections in the feature
map, I is a set containing all these index sets, and Pi ∈ {I,X, Y, Z}. The
data mapping ψs is defined as:

ψ(x) =

 xi if S = {i}∏
j∈S(π − xj) if |S| > 1

(6.9)

Some examples include using P = Y , or P = Z, in one qubit setting. These
map interval [−π, π] to the corresponding states visualised on bloch sphere:
Corresponding colors of statevectors correspond to the gradient between

Figure 6.1: Pauli Y feature map

green (x = −π) and blue (x = π) color.

6.5 ZZ-feature map

A very famous embedding throughout the quantum computing community is
the 2-qubit ZZ-feature map[HCT+19]. This embedding is part of the Pauli
feature map family, and maps the data with the set of single qubit rotation
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6. Embeddings .....................................

Figure 6.2: Pauli Z feature map

P (λ) about the Z axis depending on data and a set of CNOT gates. P (λ) is
defined as:

P (λ) =
(

1 0
0 eiλ.

)
(6.10)

Circuit realising ZZ-feature map is then depicted in the figure below:

q0 : H P(2x0) • •
q1 : H P(2x1) P(2.0(π − x0)(π − x1))

Figure 6.3: ZZ-feature map

with (x0, x1) = x ∈ X .

6.6 Repeated embedding

Another possible option is to use repeated embeddings. These work simply
by applying embedding circuits right after each other. The resulting kernel
corresponds to the kernel to the power of a number of repetitions. For
example, considering amplitude embedding with 3 repetitions, the resulting
kernel is:

κ(x, x′) = (|x†x∥2)3 (6.11)
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Chapter 7

Experiments

A set of experiments were done in order to justify previously introduced
concepts. At first, data are mapped to the circuit using an embedding. The
kernel target alingment for kernel ⟨ψ(x)|I|ψ(x′)⟩ is calculated. This acts as
a benchmark for the next circuits. New kernels are designed using random
unitary sampling as:

κ(x, x′) = ⟨ψ(x)|U |ψ(x′)⟩ (7.1)
with U being a randomly sampled unitary matrix. The idea then is to use
rejection sampling to find the best possible choice for U to improve the kernel.
Then, using the previously introduced results, this kernel is #P-hard to
simulate classically and thus can lead to a quantum advantage.

7.1 Random unitaries

For generating random unitaries QR decomposition approach is utilized
[Mez07]. The procedure is as follows:..1. We generate N ×N matrix Z with complex entries such that both real

and complex part is normally distributed with mean 0 and variance 1..2. Compute a QR decomposition of Z = QR..3. Generate diagonal matrix Λ = diag(Rii/|Rii|)..4. Compute U = QΛ, which is random unitary.
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7. Experiments .....................................
7.2 Algorithm

The algorithm for each experiment is designed so that kernel target alingment
is evaluated for each random unitary C. This experiment is then run for 4
types of embedding:

. ZZ feature map

.XY feature map

.Amplitude embedding

. Rotation embedding

For each of these embeddings, 100 random unitaries are sampled to produce
a kernel κ(x, x′) = ⟨0n|C|0n⟩ which is #P hard to simulate classically. Kernel
target alignment of these kernels given the task are then calculated and
evaluated.
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................................7.3. Ad hoc data experiment

Algorithm 1 Classifying data
Inputs:

Labelled data (xi, yi)
Unlabelled data (x̂i)

Output:
Unitary maximizing kernel-target alignment U

Classified data (x̂i, ŷi)
procedure Training

for all xi do
ψi ← E(xi) |0n⟩ ▷ We obtain statevectors of mapped data

end for
t← 0
while t = maxiter do ▷ Boolean variable for train ending

C ← random unitary
for all ψi,ψj do

Kij ← ⟨ψi|C|ψj⟩ ▷ We get kernel matrix
end for
KTAC ← KTA(K, y) ▷ Evaluate kernel-target alignment
t← t+ 1

end while
end procedure
procedure Evaluating

for all x̂i do
ψ̂i ← E(x̂i) |0n⟩
ŷi ← 0
for all ψj do

ŷi ← ŷi + ⟨ψj |U |ψ̂i⟩
end for
ŷi ← ŷi

end for
end procedure

7.3 Ad hoc data experiment

For first experiment ad hoc dataset from qiskit machine learning library.
Settings of data generation were : Example of generated data was: This
experiment was done repeatedly while giving interesting results.
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7. Experiments .....................................
Training set size for each class 30

Test set size for each class 10
Sample dimension 2

Gap 0.5

Figure 7.1: Example of data from ad hoc dataset

7.3.1 ZZ feature mapping

7.3.2 XY feature mapping

XY feature embedding achieved the greatest rating of tested kernels.
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................................7.3. Ad hoc data experiment

7.3.3 Rotational embedding

7.3.4 Amplitude embedding
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7. Experiments .....................................
7.4 MNIST data experiment

Another experiment was done using the notoriously known MNIST dataset.
The modified National Institute of Standards and Technology database is a
dataset of 60000 training and 10000 testing samples of handwritten letters.
Each letter consists of (10,10) pixels. For binary classification, two letters R
and M where selected. In order to encode this data into the quantum circuit,
data needed to be preprocessed - for each letter were obtained two features:

. Difference between the sum of upper half pixels and lower half pixels. Difference between the sum of left half pixels and right half pixels

These features were then downscaled to the interval of [−π, π] so the rotational
gates realising embedding can be used. The same algorithm was then used
to find unitaries that increase kernel target alignment. The results are given
below:
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................................7.4. MNIST data experiment
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Chapter 8

Discussion

From the experiments, several questions arise. The first of them is the absence
of correlation between the kernel target alignment and model performance.
Only amplitude embedding on ad hoc datasets exhibits the properties that
were introduced - that kernel target alignment improves the model’s perfor-
mance. It is no surprise that for each dataset, each embedding has a different
performance, but from the results, it can be seen that the best possible kernel
target alignment for almost each of the embeddings is the initial one, with
unitary being just the identity matrix.
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Chapter 9

Conclusion

This work introduces the idea of creating kernels using random unitaries,
making them #P hard to evaluate classically. Kernel target alignment is
mentioned as the main method for defining the quality of the generated kernel.
Concepts introduced in the first part of the thesis are then tested on data with
rather unsatisfactory results, shattering the main idea of this work. Kernel
target alignment was not improved in any of the experiments; what is more,
even the performance of the generated models did not improve, compared to
the basic kernel not being enhanced by the random unitary.

31 ctuthesis t1606152353



ctuthesis t1606152353 32



Appendix A

Bibliography

[CSTEK01] Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz S.
Kandola, On kernel-target alignment, Neural Information Pro-
cessing Systems, 2001.

[HBM+21] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan
Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R. McClean,
Power of data in quantum machine learning, Nature Communi-
cations 12 (2021), no. 1.

[HCT+19] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W.
Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gam-
betta, Supervised learning with quantum-enhanced feature spaces,
Nature 567 (2019), no. 7747, 209–212.

[KBS21] Jonas Kübler, Simon Buchholz, and Bernhard Schölkopf, The in-
ductive bias of quantum kernels, Advances in Neural Information
Processing Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, eds.), vol. 34, Curran
Associates, Inc., 2021, pp. 12661–12673.

[KMS19] Jonas M Kübler, Krikamol Muandet, and Bernhard Schölkopf,
Quantum mean embedding of probability distributions, Physical
Review Research 1 (2019), no. 3, 033159.

[Mez07] Francesco Mezzadri, How to generate random matrices from the
classical compact groups, 2007.

[Mov20] Ramis Movassagh, Quantum supremacy and random circuits,
2020.

33 ctuthesis t1606152353



A. Bibliography.....................................
[Sch21] Maria Schuld, Supervised quantum machine learning models are

kernel methods, 2021.

[TD04] Barbara M. Terhal and David P. DiVincenzo, Adaptive quantum
computation, constant depth quantum circuits and arthur-merlin
games, 2004.

[Wil11] Colin P. Williams, Quantum gates, pp. 51–122, Springer London,
London, 2011.

ctuthesis t1606152353 34



MASTER‘S THESIS ASSIGNMENT 

I. Personal and study details 

474750 Personal ID number:  Svoboda  Jan Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Control Engineering 

Cybernetics and Robotics Study program: 

II. Master’s thesis details 

Master’s thesis title in English: 

Quantum machine learning  

Master’s thesis title in Czech: 

Kvantové strojové učení  

Guidelines: 

There is much recent interest in the possibility of the use of quantum computers in machine learning. While early 
papers such as Havlíček et al. (Nature 2019) were broadly positive, more recent papers (e.g., Kübler et al., 
NeurIPS 2021) present the challenges involved rather clearly. Notably, Kübler et al. introduced a number of 
conditions that need to be satisfied by the quantum kernel in order to improve the statistical performance compared 
to kernels computable classically in polynomial time. 
In the present dissertation, the student will develop a method for rejection sampling of random unitaries to satisfy 
the properties of Kübler et al. (NeurIPS 2021). Notably, the process will start with an ensemble of random 
unitaries that are hard to simulate classically in polynomial time (Movassagh, 2023). Then, the unitaries that do 
not satisfy the other properties of Kübler et al. (NeurIPS 2021) will be rejected. The properties of such random 
quantum kernels will be studied. In the computational testing, a variety of encoding of the inputs should be 
considered, as well as the ML Reproducibility checklist. 

Bibliography / sources: 

[1] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow & 
Jay M. Gambetta: Supervised learning with quantum-enhanced feature spaces. Nature volume 567, pages209–212 
(2019). 
https://www.nature.com/articles/s41586-019-0980-2 
[2] Jonas M. Kübler, Simon Buchholz, Bernhard Schölkopf: The Inductive Bias of Quantum Kernels. NeurIPS 2021, 
https://proceedings.neurips.cc/paper/2021/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf 
[3] Ramis Movassagh: The hardness of random quantum circuits. Nature Physics 19 (11), 1719-1724 
[4] Vojtěch Havlíček et al., https://github.com/qiskit-community/qiskit-machine- 
learning/blob/main/qiskit_machine_learning/kernels/trainable_fidelity_quantum_kernel.py (2023) 
[5] Vyacheslav Kungurtsev, Georgios Korpas, Jakub Marecek, Elton Yechao Zhu: Iteration Complexity of Variational 
Quantum Algorithms. Quantum 2024. https://arxiv.org/pdf/2209.10615.pdf 

Name and workplace of master’s thesis supervisor: 

Mgr. Jakub Mareček, Ph.D.    Artificial Intelligence Center  FEE 

Name and workplace of second master’s thesis supervisor or consultant: 

   

Deadline for master's thesis submission:   24.05.2024 Date of master’s thesis assignment:   01.03.2024 

Assignment valid until:   
by the end of summer semester 2024/2025 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Michael Šebek, DrSc. 

Head of department’s signature 
Mgr. Jakub Mareček, Ph.D. 

Supervisor’s signature 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1 



III. Assignment receipt 
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1 


	Introduction
	Quantum kernels
	Reproducing kernel Hilbert spaces
	Spectral decomposition
	Kernel classifier


	Quantum kernel methods properties
	Kernel target alignment
	Asymmetric geometric difference
	Speed-up using quantum kernels

	Hardness of random circuits
	Circuit architecture
	Worst case and average case circuits
	Haar random circuit distribution
	Cayley transformation and Cayley path
	Theorems


	Main concept
	Embeddings
	Basis embedding
	Amplitude embedding
	Rotation embedding
	Pauli feature map
	ZZ-feature map
	Repeated embedding

	Experiments
	Random unitaries
	Algorithm
	Ad hoc data experiment
	ZZ feature mapping
	XY feature mapping
	Rotational embedding
	Amplitude embedding

	MNIST data experiment

	Discussion
	Conclusion
	Bibliography
	Project Specification

